lowered ceiling - ορισμός. Τι είναι το lowered ceiling
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι lowered ceiling - ορισμός

БЛИЖАЙШЕЕ КРУГЛОЕ ЧИСЛО
Правила округления; Потолок числа; Округление чисел; Значащие цифры; Floor; Truncate; Trunc; Fix; Ceil; Ceiling; Значащая цифра; Символ Айверсона; ⌈; ⌉; ⌊; ⌋

Округление         

числа, приближённое представление числа в некоторой системе счисления с помощью конечного количества цифр. Необходимость О. диктуется потребностями вычислений, в которых, как правило, окончательный результат не может быть получен абсолютно точно, и следует избегать бесполезного выписывания лишних цифр, ограничивая все числа лишь нужным количеством знаков.

При О. числа оно заменяется др. числом (t-разрядным, т. е. имеющим t цифр), представляющим его приближённо. Возникающую при этом Погрешность называют погрешностью О. или ошибкой О.

Применяются различные способы О. числа. Простейший из них состоит в отбрасывании младших разрядов числа, выходящих за t разрядов. Абсолютная погрешность О. при этом не превосходит единицы t-го разряда числа. Способ О., обычно применяемый в ручных вычислениях, состоит в О. числа до ближайшего t-разрядного числа. Абсолютная ошибка О. при этом не превосходит половины t-го разряда округляемого числа. Этот способ даёт минимально возможную ошибку среди всех способов О., использующих t разрядов.

Способы О., реализуемые на вычислительной машине, определяются её назначением, техническими возможностями и, как правило, уступают по точности О. до ближайшего t-разрядного числа. В ЭВМ наиболее приняты два режима арифметических вычислений: так называется режим с плавающей запятой и режим с фиксированной запятой. В режиме с плавающей запятой результат О. числа имеет определённое количество значащих цифр; в режиме с фиксированной запятой - определённое количество цифр после запятой. В первом случае принято говорить об О. до t разрядов, во втором - об О. до t разрядов после запятой. При этом в первом случае контролируется относительная погрешность О., во втором - абсолютная погрешность.

В связи с использованием вычислительных машин развились исследования накопления ошибок О. в больших вычислениях. Анализ накопления ошибок в численных методах (См. Численные методы) позволяет характеризовать методы по чувствительности их к ошибкам О., строить стратегии реализации их в вычислительной практике, учитывающие ошибки О., и оценить точность окончательного результата.

Лит.: Крылов А. Н., Лекции о приближенных вычислениях, 6 изд., М., 1954; Березин И. С., Жидков Н. П., Методы вычислений, 3 изд., т. 1, М., 1966; Бахвалов Н. С., Численные методы, М., 1973.

Г. Д. Ким.

ОКРУГЛЕНИЕ         
числа , замена его числом, представляющим его приближенно. Округление производится постепенно справа налево по следующему правилу: когда последняя значащая цифра a?4, она просто отбрасывается; когда a?6, ближайшая слева от нее цифра увеличивается на единицу; когда a=5, ближайшая слева от нее цифра увеличивается на единицу, если она нечетная, или не изменяется, если она четная (правило четной цифры). Напр., округляя число 3,141592653 до пяти, четырех и трех значащих цифр, получим соответственно 3,1416, 3,142, 3,14.
округление         
ОКРУГЛ'ЕНИЕ, округления, мн. нет, ср. (·книж. ). Действие по гл. округлить
-округлять
.

Βικιπαίδεια

Округление

Округление — замена числа на его приближённое значение (с определённой точностью), записанное с меньшим количеством значащих цифр. Модуль разности между заменяемым и заменяющим числом называется ошибкой округления.

Округление применяется для представления значений и результатов вычислений с тем количеством знаков, которое соответствует реальной точности измерений или вычислений, либо той точности, которая требуется в конкретном приложении. Округление в ручных расчётах также может использоваться для упрощения вычислений в тех случаях, когда погрешность, вносимая за счёт ошибки округления, не выходит за границы допустимой погрешности расчёта.

Τι είναι Округл<font color="red">е</font>ние - ορισμός